Hybrid-Trefftz stress and displacement elements for dynamic analysis of bounded and unbounded saturated porous media
Abstract
The displacement and stress models of the hybrid-Trefftz finite element formulation are applied to the dynamic analysis of two-dimensional bounded and unbounded saturated porous media problems. The formulation develops from the classical separation of variables in time and space. A finite element approach is used for the discretization in time of the governing differential equations. It leads to a series of uncoupled problems in the space dimension, each of which is subsequently discretized using either the displacement or the stress model of the hybrid-Trefftz finite element formulation. As typical of the Trefftz methods, the domain approximation bases are constrained to satisfy locally all domain equations. An absorbing boundary element is adopted in the extension to the analysis of unbounded media. The paper closes with the illustration of the application of the alternative hybrid-Trefftz stress and displacement elements to the solution of bounded and unbounded consolidation problems.
References
[2] M.A. Biot. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. Journal of Acoustic Society of America, 28: 168-178, 1956.
[3] J.P. Carter, J.R. Booker, J .C. Small. The analysis of finite elasto-plastic consolidation. International Journal of Numerical and Analytical Methods in Geomechanics, 3: 107-129, 1979.
[4] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz. Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions. Communications in Applied Numerical Methods, 5(3): 159- 169, 1989.
[5] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz. Solution of Helmholtz equation by Trefftz method. International Journal for Numerical Methods in Engineering, 32(1): 63- 78, 1991.
[6] J.A.T. Freitas. Formulation of elastostatic hybrid-Trefftz stress elements. Computer Methods in Applied Mechanics and Engineering, 153: 127- 151, 1998.
[7] J.A.T. Freitas. Hybrid finite element formulations for elastodynamic analysis in the frequency domain. International Journal of Solids and Structures, 36(13): 1883-1923, 1999.
[8] J.A.T. Freitas. Mixed finite element solution of time-dependent problems. Computer Methods in Applied Mechanics and Engineering, to appear, 2008.
[9] J .A.T. Freitas, C. Cismasiu. Numerical implementation of hybrid-Trefftz displacement elements. Computers and Structures, 73: 207-225, 1999.
[10] J .A.T. Freitas, C. Cismasiu. Hybrid-Trefftz displacement element for spectral analysis of bounded and unbounded media. International Journal of Solids and Structures, 40: 671-699, 2003.
[11] J.A.T. Freitas, I.D. Moldovan, M. Toma. Trefftz spectral analysis of biphasic media. Proceedings of VI World Congress on Computational Mechanics, in conjunction with Asia-Pacific Conference on Computational Mechanics, Beijing, China. Tsinghua University Press and Springer-Verlag, 2004.
[12] J.A.T. Freitas, Z.M. Wang. Hybrid-Trefftz stress elements for elastoplasticity. International Journal for Numerical Methods in Engineering, 43(4): 655-683, 1998.
[13] H. Gourgeon, I. Herrera. Boundary methods. C-complete systems for biharmonic equations. In: C.A. Brebbia, ed., Boundary Element Method, pp. 431-441. Springer, Berlin, 1981.
[14] I. Herrera. Boundary methods; a criterion for completeness. Proceedings of the National Academy of Sciences, 77(8): 4395-4398, 1980.
[15] I. Herrera. Boundary methods C-complete systems for Stokes problems. Computer Methods in Applied Mechanics and Engineering, 30: 225-241, 1982.
[16] I. Herrera. Boundary Methods - an Algebraic Theory. Pitman Advanced Publishing Program, Boston, 1984.
[17] 1. Herrera, R.E. Ewing, M.E. Celia, T.F. Russel. Eulerian-Lagrangian localized adjoint method: the theoretical framework. Numerical Methods for Partial Differential Equations, 9: 431-457, 1993.
[18] W.G. Jin, Y.K. Cheung, O.C. Zienkiewicz. Application of the Trefftz method in plane elasticity problems. International Journal for Numerical Methods in Engineering, 30(6): 1147- 1161, 1990.
[19] J. Jirousek. Basis for development oflarge finite elements locally satisfying all field equations. Computer Methods in Applied Mechanics and Engineering, 14: 65- 92, 1978.
[20] J. Jirousek. Hybrid-Trefftz plate bending elements with p-method capabilities. International Journal for Numerical Methods in Engineering, 24: 1367- 1393, 1987.
[21] J. Jirousek, M. N'Diaye. Solution of orthotropic plates based on p-extension of the hybrid-Trefftz finite element model. Computers and Structures, 34(1): 51-62, 1990.
[22] J. Jirousek, P. Teodorescu. Large finite elements method for the solution of problems in the theory of elasticity. Computers and Structures, 15: 575-587, 1982.
[23] J. Jirousek, A. Wróblewski. T-elements: state of the art and future trends. Archives of Computational Methods in Engineering, 3-4: 323-434, 1996.
[24] J. Jirousek, A. Wróblewski, X.-Q. He. A family of quadrilateral hybrid-Trefftz p-elements for thick plate analysis. Computer Methods in Applied Mechanics and Engineering, 127(1- 4): 315-344, 1995.
[25] J. Jirousek, A. Wróblewski, B. Szybiński. A new 12 DOF quadrilateral element for analysis of thick and thin plates. International Journal for Numerical Methods in Engineering, 38(15): 2619-2638, 1995.
[26] E. Kita, N. Kamiya. Trefftz method: an overview. Advances in Engineering Software, 24: 3- 12, 1995.
[27] I.D. Moldovan. Hybrid-Trefftz Finite Elements for Elastodynamic Analysis of Saturated Porous Media. PhD Thesis, Universidade Tecnica de Lisboa, Lisbon, 2008.
[28] I.D. Moldovan, J .A.T. Freitas. Hybrid-Trefftz finite element models for bounded and unbounded elastodynamic problems. Proceedings of Third European Conference on Computational Mechanics, Lisbon, Portugal. Springer, 2006.
[29] R. Piltner. Recent developments in the Trefftz method for finite element and boundary element applications. Advances in Engineering Software, 24: 105- 115, 1995.
[30] G. Ruoff. Die praktische Berechnung der Kopplungsmatrizen bei der Kombination der Trefftzschen Metode und der Metode der finiten Elemente bei flachen Schalen. In: K. Buck, D. Scharpf, E. Stein, W. Wunderlich, eds., Finite Elemente in der Statik, pp. 242-259, 1973.
[31] E. Stein. Die Kombination des modifizierten Trefftzschen Verfahrens mit der Methode der Finiten Elemente. In: K. Buck, D. Scharpf, E. Stein, W. Wunderlich, eds., Finite Elemente in der Statik, pp. 172- 185, 1973.
[32] K. Terzaghi, R.B. Peck. Soil Mechanics in Engineering Practice. John Wiley and Sons, New York, 1948.
[33] E. Trefftz. Ein Gegenstuck zum Ritzschen Verfahren. Proceedings of The International Congress of Applied Mechanics, Zurich, 1926, pp. 285- 292.
[34] G.M. Voros, J. Jirousek. Application of the hybrid-Trefftz finite element model to thin shell analysis. In: P. Ladeveze and O.C. Zienkiewicz, eds., Proceedings of European Conference on New Advances in Computational Structural Mechanics, Giens, France, 1991, pp. 547-554.