Incomplete sensitivities in design and control of fluidic channels

Downloads

Authors

  • Bijan Mohammadi Montpellier University, France
  • Juan Santiago Stanford University, United States

Abstract

We would like to show how to perform shape optimization and state control at a cost comparable to the one of analysis. To this end, we propose to only use informations available for cost function evaluation and incomplete sensitivities not requiring the solution of the linearized state equation. The application of the method is presented for microfluidic MEMs design and control.

References

[1] H. Attouch, R. Cominetti. A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differential Equations, 128(2): 519- 540, 1996.
[2] H. Attouch, A. Cabot, M. Masmoudi, B. Mohammadi, P. Redont. Coupling Dynamic Approaches for Global Minimization, ACSIOM preprint. Montpellier, 2000.
[3] A. Cabot. Etude Mathematiques de Systèmes Dynamiques pour Minimisation Globale, PhD Thesis. University of Montpellier, 2001.
[4] C.T. Culbeston, S.C. Jacobson, J . Ramsey. Dispersion sources for compact geometries on microchips, Analytical Chemistry, 70: 3781- 3789, 1998.
[5] B. Mohammadi. Practical Applications to Fluid Flows of Automatic Differentiation for Design Problems. VKI lecture series, 1997-05, 1997.