A parametrized variational principle of nonlinear piezoelectricity
Keywords:
variational theory, piezoelectricity, constitutive equations.Abstract
The variational theory is the theoretical basis of the finite element method, meshfree particle methods and other modern numerical techniques. The present paper establishes a family of variational principles for nonlinear piezoelectricity. A new constitutive relation is suggested, which is deduced as a stationary condition of a generalized variational principle.
References
[2] D.S . Chandrasekharaiah. A generalized linear thermo-elasticity theory for piezoelectric media. ACTA Mechanica, 71: 39-49, 1998.
[3] T.Y. Chen. Further correspondences between plane piezoelectricity and generalized plane strain in elasticity. Proc. R . Soc. Lond., A454: 873- 884, 1971 .
[4] W.Z. Chien. Method of high-order Lagrange multiplier and generalized variational principles of elasticity with more general forms of functionals. Applied Math. & Mech., 4(2): 137-150, 1983.
[5] S.I. Chizhikov, N.G. Sorokin and V.S. Petrakov. The elastoelectric effect in the non-centrosymmetric crystals. In: Piezoelectricity, eds. G. W. Taylor et al., Gordon & Breach Science Publishers, New York, 75- 91 , 1985.