Equations of motion of serial chains in spatial motion using a recursive algorithm

Authors

  • Hazem Ali Attia King Saud University
    Saudi Arabia

Keywords:

multibody system dynamics, equations of motion, system of rigid bodies, mechanisms, machine Theory

Abstract

In the present study, a recursive algorithm for generating the equations of motion of serial chains that undergo spatial motion is presented. The method is based on treating each rigid body as a collection of constrained particles. Then, the force and moment equations are used to generate the rigid body equations of motion in terms of the Cartesian coordinates of the dynamically equivalent constrained system of particles, without introducing any rotational coordinates and the corresponding rotation matrices. For the open loop case, the equations of motion are generated recursively along the serial chains. Closed loop systems are transformed to open loop systems by cutting suitable kinematic joints and introducing cutjoint constraints. The method is simple and suitable for computer implementation. An example is chosen to demonstrate the generality and simplicity of the developed formulation.

References

[1] J. Denavit, R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 215- 221, 1955.
[2] P. N. Sheth, J. J. Uicker, Jr. IMP (Integrated Mechanisms Program), A computer-aided design analysis system for mechanisms linkages. ASME Journal of Engineering for Industry, 94: 454, 1972.
[3] N. Oriandea, M. A. Chace, D. A. Calahan. A sparsity-oriented approach to dynamic analysis and design of mechanical systems, Part I and II. ASME Journal of Engineering for Industry, 99: 773- 784, 1977.
[4] P. E. Nikravesh. Computer aided analysis of mechanical systems. Prentice-Hall, Englewood Cliffs N.J., 1988.
[5] S. S. Kim, M. J . Vanderploeg. A general and efficient method for dynamic analysis of mechanical systems using velocity transformation. ASME Journal of Mechanisms, Transmissions and Automation in Design, 108:(2) 176-182, 1986.

Downloads

Published

2023-01-18

Issue

pp. 35-46

Section

Articles

How to Cite

Attia, H. A. (2023). Equations of motion of serial chains in spatial motion using a recursive algorithm. Computer Assisted Methods in Engineering and Science, 11(1), 35-46. https://cames3.ippt.pan.pl/index.php/cames/article/view/1042