Application of grammatical evolution to coefficient identification problem in two-dimensional elastic problem
Keywords:
grammatical evolution, Backus-Naur form (BNF), coefficient matrix, plane strain stateAbstract
Grammatical evolution (GE), which is a kind of evolutionary algorithms, is designed to find a function, an executable program or program fragment that will achieve a good fitness value for the given objective function to be minimized. In this study, GE is applied for the coefficient identification problem of the stiffness matrix in the two-dimensional elastic problem. Finite element analysis of the plate with a circular hole is performed for determining the set of the stress and the strain components. Grammatical evolution determines the coefficient matrix of the relationship between the stress and strain components. The coefficient matrix is compared with Hooke's law in order to confirm the validity of the algorithm. After that, three algorithms are shown for improving the convergence speed of the original GE algorithm.