On improved evolutionary algorithms application to the physically based approximation of experimental data

Authors

  • Janusz Orkisz
  • Maciej Głowacki

Keywords:

evolutionary algorithms, solution efficiency increase,, experimental data smoothing, large non-linear constrained optimization problems

Abstract

In this paper an evolutionary algorithms (EA) application to the physically based approximation (PBA) of experimental and/or numerical data is considered. Such an approximation may simultaneously use the whole experimental, theoretical and heuristic knowledge about the analyzed problems. The PBA may be also applied for smoothing discrete data obtained from any rough numerical solution of the boundary value problem, and for solving inverse problems as well, like reconstruction of residual stresses based on experimental data. The PBA presents a very general approach formulated as a large non-linear constrained optimization problem. Its solution is usually complex and troublesome, especially in the case of non-convex problems. Here, considered is a solution approach of such problems based on the EA. However, the standard EA are rather slow methods, especially in the final stage of optimization process. In order to increase their solution efficiency, several acceleration techniques were introduced. Various benchmark problems were analyzed using the improved EA. The intended application of this research is reconstruction of residual stresses in railroads rails and vehicle wheels based on neutronography measurements.

Downloads

Published

2017-01-25

Issue

pp. 27-38

Section

Articles

How to Cite

Orkisz, J., & Głowacki, M. (2017). On improved evolutionary algorithms application to the physically based approximation of experimental data. Computer Assisted Methods in Engineering and Science, 21(1), 27-38. https://cames3.ippt.pan.pl/index.php/cames/article/view/52

Most read articles by the same author(s)