Inverse estimation of model parameters for newborn brain cooling process simulations
DOI:
https://doi.org/10.24423/cames.260Keywords:
inverse method, function specification method, bioheat, brain coolingAbstract
In this work, a three-dimensional simplified computational model was built to simulate the passive thermophysiological response of part of a newborn's head for neonate’s selective brain cooling. Both metabolic heat generation and blood perfusion were considered. The set of model parameters was selected and a sensitivity study was carried out. Analysis of dimensionless sensitivity coefficients showed that the most important are: the contact thermal resistance between the cool-cap and skin, the thermal resistance of the plastic wall material, and deep (arterial) blood temperature.
The function specification method was applied to estimate the value of the contact resistance. Two, four and six computationally simulated measurements with different uncertainties were used to adjust random contact resistance value to the assumed one. Results showed that when using only two measurements having 2% of the uncertainty, the error of estimation does not exceed 9.8%. However, when using six measurements having 1% of uncertainty, the resulting estimation is burdened with an error of 0.3% only.
References
[2] F. Wang. Research progress of therapeutic hypothermia in the treatment of neonatal hypoxic-ischemic encephalopathy. Journal of International Translational Medicine, 5(4): 176–181, 2017. doi: 10.11910/2227-6394.2017.05.04.02.
[3] R.C. Silveira, R.S. Procianoy. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy. Journal de Pediatria (Rio. J), 91(6, Suppl 1): S78–S83. doi: 10.1016/j.jped.2015.07.004.
[4] S.E. Jacobs, M. Berg, R. Hunt, W.O. Tarnow-Mordi, T.E. Inder, P.G. Davis. Cooling for newborns with hypoxic ischaemic encephalopathy, Cochrane Database Systematic Reviews, (1): CD003311, 2013. doi: 10.1002/14651858.CD003311.pub3.
[5] J. Wyllie, J.M. Perlman, J. Kattwinkel, D.L. Atkins, L. Chameides, J.P. Goldsmith, R. Guinsburg, M.F. Hazinski, C. Morley, S. Richmond, W.M. Simon, N. Singhal, E. Szyld, M. Tamura, S. Velaphi. Part 11: Neonatal resuscitation: 2010 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation, 81(Suppl 1:e260-87): 516–538, 2010. doi: 10.1016/j.resuscitation.2010.08.029.
[6] L.E. Łaszczyk, A.J. Nowak. The Analysis of a Newborn's Brain Cooling Process, LAP LAMBERT Academic Publishing, 2015.
[7] J.E. Łaszczyk, A.J. Nowak. Computational modelling of neonate's brain cooling. International Journal of Numerical Methods for Heat and Fluid Flow, 26(2): 571–590, 2016. doi: 10.1108/HFF-05-2015-0191.
[8] Z. Ostrowski. Model wymiany ciepła oraz termoregulacji w tkankach ciała człowieka. Wydawnictwo Politechniki Śląskiej, Gliwice, 2019.
[9] K. Katić, R. Li, W. Zeiler, Thermophysiological models and their applications : A review, Building and Environment, 106: 286–300, 2016. doi: 10.1016/j.buildenv.2016.06.031.
[10] K. Kurpisz, A.J. Nowak. Inverse Thermal Problems. International Series on Computational Engineering, Computational Mechanics Publications, Southampton, UK, 1995.
[11] M.N. Ozisik, H.R.B. Orlande. Inverse Heat Transfer. Fundamentals and Applications, 3rd Ed., Taylor & Francis, 2000.
[12] Olympic Cool-Cap System Trainer, Operation Instructions Olympic Medical, a Div. Natus, USA, 2007.
[13] D. Bandoła, M. Rojczyk, Z. Ostrowski, J. Łaszczyk, W. Walas, A.J. Nowak. Experimental setup and measurements of the heat transfer rate during newborn brain cooling process. Archives of Thermodynamics, 39(2): 85–96, 2018. doi: 10.1515/aoter-2018-0021.
[14] ANSYS Fluent Theory Guide. Release 17.2. ANSYS, Inc., Canonsland, PA, 2013, pp. 724–746.
[15] H.H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2): 93–122, 1948.
[16] D. Fiala, G. Havenith. Modelling human heat transfer and temperature regulation. In: A. Gefem, Y. Epstein [Eds], The mechanobiology and mechanophysiology military-related injuries, pp. 265–302, 2015.
[17] R.G. Gordon, R.B. Roemer, S.M. Horvath. A mathematical model of the human temperature regulatory system–transient cold exposure response. IEEE Transactions on Biomedical Engineering, 23(6): 434–444, 1976. doi: 10.1109/TBME.1976.324601.
[18] D. Fiala, K.J. Lomas, M. Stohrer. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of Applied Physiology, 87(5): 1957–1972, 1999.
[19] Z. Ostrowski, P. Buliński, W. Adamczyk, P. Kozołub, A.J. Nowak. Numerical model of heat transfer in skin lesions, Scientific Letters of Rzeszow University of Technology, Mechanics, 32(1/15): 55–62, 2015. doi: 10.7862/rm.2015.6.
[20] Z. Ostrowski, P. Bulinski, W. Adamczyk, A.J. Nowak. Modelling and validation of transient heat transfer processes in human skin undergoing local cooling [in Polish: Modelowanie oraz walidacja niestacjonarnych procesów wymiany ciepła w skórze poddanej lokalnemu ochładzaniu]. Przemysł Elektrotechniczny, 91(5): 7–79, 2015. doi: 10.15199/48.2015.05.20.