Modeling of Cracking of the Concrete Cover Taking into Account the Coupled Diffusion/Mechanical Process

Authors

DOI:

https://doi.org/10.24423/cames.1016

Keywords:

corrosion, FEM, elastic-plastic, cover cracking

Abstract

This paper presents a mechanical-diffusion one-way coupled corrosion model that allows the analysis of both accelerated and natural reinforcement corrosion. The impact of corrosion products on the concrete cover is exerted using the tensor of the volumetric strain rate dependent on the rate of concentration change of corrosion products or the rate of concentration change of ferrous ions. The approach proposed in the paper enables the analysis of the impact of corrosion products with a complex composition that depends on the intensity and density of the electric current. The model also enables the analysis of cases where the distribution of corrosion products is inhomogeneous around the circumference of the rebar.

References

1. H. Böhni [Ed.], Corrosion in Reinforced Concrete Structures, Woodhead Publishing, 2005.
2. Z. Wang, W. Jin, Y. Dong, D.M. Frangopol, Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives, Engineering Structures, 157: 119–131, 2018, doi: 10.1016/j.engstruct.2017.11.022.
3. U. Angst, M. Büchler, On the applicability of the Stern-Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion, Materials and Corrosion, 66(10): 1017–1028, 2015, doi: 10.1002/maco.201407997.
4. Z.P. Bažant, Physical model for steel corrosion in concrete sea structures—theory, Journal of the Structural Division, ASCE, 105(6): 1137–1153, 1979, doi: 10.1061/JSDEAG.0005168.
5. S.J. Pantazopoulou, K.D. Papoulia, Modeling cover-cracking due to reinforcement corrosion in rc structures, Journal of Engineering Mechanics, 127(4): 342–351, 2001, doi: 10.1061/(ASCE)0733-9399(2001)127:4(342).
6. Y. Liu, R.E. Weyers, Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures, ACI Materials Journal, 95: 675–681, 1998, doi: 10.14359/410.
7. A. Jamali, U. Angst, B. Adey, B. Elsener, Modeling of corrosion-induced concrete cover cracking: A critical analysis, Construction and Building Materials, 42: 225–237, 2013, doi: 10.1016/j.conbuildmat.2013.01.019.
8. Y. Liu, Modeling the Time-To-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures, Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1996.
9. A. Michel, B.J. Pease, M.R. Geiker, H. Stang, J.F. Olesen, Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements, Cement and Concrete Research, 41(11): 1085–1094, 2011, doi: 10.1016/j.cemconres.2011.06.006.
10. A. Michel, B.J. Pease, A. Peterová, M.R. Geiker, H. Stang, A.E.A. Thybo, Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations, Cement and Concrete Composites, 47: 75–86, 2014, doi: 10.1016/j.cemconcomp.2013.04.011.
11. B. Wieczorek, T. Krykowski, Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer [in Polish: Zastosowanie reguł mechaniki uszkodzen do oceny wzrostu odkształcen korozyjnych w warstwie przejsciowej], Ochrona przed Korozja, 60: 5–8, 2017, doi: 10.15199/40.2017.1.1.
12. B. Martín-Pérez, Service Life Modelling of R.C. Highway Structures Exposed to Chlorides, Ph.D. Thesis, University of Toronto, 1999.
13. K. Maekawa, T. Ishida, T. Kishi, Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2): 91–126, 2003, doi: 10.3151/jact.1.91.
14. J. Ožbolt, F. Oršanic, G. Balabanic, M. Kušte, Modeling damage in concrete caused by corrosion of reinforcement: coupled 3D FE model, International Journal of Fracture, 178: 233–244, 2012, doi: 10.1007/s10704-012-9774-3.
15. J. Ožbolt, F. Oršanic, G. Balabanic, Modeling pull-out resistance of corroded reinforcement in concrete: Coupled three-dimensional finite element model, Cement and Concrete Composites, 46: 41–55, 2014, doi: 10.1016/j.cemconcomp.2013.10.014.
16. J. Ožbolt, F. Oršanic, G. Balabanic, Modelling processes related to corrosion of reinforcement in concrete: coupled 3D finite element model, Structure and Infrastructure Engineering, 13(1): 135–146, 2017, doi: 10.1080/15732479.2016.1198400.
17. C. Cao, M.M.S. Cheung, Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures, Construction and Building Materials, 51: 75–81, 2014, doi: 10.1016/j.conbuildmat.2013.10.042.
18. C. Cao, M.M.S. Cheung, B.Y.B. Chan, Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate, Corrosion Science, 69: 97–109, 2013, doi: 10.1016/j.corsci.2012.11.028.
19. A. Chauhan, U.K. Sharma, Crack propagation in reinforced concrete exposed to nonuniform corrosion under real climate, Engineering Fracture Mechanics, 248: 107719, 2021, doi: 10.1016/j.engfracmech.2021.107719.
20. L. Dai, D. Long, L. Wang, Meso-scale modeling of concrete cracking induced by 3D corrosion expansion of helical strands, Computers and Structures, 254: 106615, 2021, doi: 10.1016/j.compstruc.2021.106615.
21. X. Fang, Z. Pan, A. Chen, Phase field modeling of concrete cracking for non-uniform corrosion of rebar, Theoretical and Applied Fracture Mechanics, 121: 103517 2022, doi: 10.1016/j.tafmec.2022.103517.
22. M. German, J. Pamin, FEM simulations of cracking in RC beams due to corrosion progress, Archives of Civil and Mechanical Engineering, 15(4): 1160–1172, 2015, doi: 10.1016/j.acme.2014.12.010.
23. T. Krykowski, T. Jasniok, F. Recha, M. Karolak, A cracking model for reinforced concrete cover, taking account of the accumulation of corrosion products in the ITZ layer, and including computational and experimental verification, Materials, 13: 5375, 2020, doi: 10.3390/ma13235375.
24. Y. Auyeung, P. Balaguru, L. Chung, Bond behavior of corroded reinforcement bars, ACI Materials Journal, 97(2): 214–220, 2000, doi: 10.14359/826.
25. C. Suwito, Y. Xi, The effect of chloride-induced steel corrosion on service life of reinforced concrete structures, Structure and Infrastructure Engineering, 4(3): 177–192, 2008, doi: 10.1080/15732470600688699.
26. J. Ožbolt, G. Balabanic, G. Periškic, M. Kušter, Modelling the effect of damage on transport processes in concrete, Construction and Building Materials, 24(9): 1638–1648, 2010, doi: 10.1016/j.conbuildmat.2010.02.028.
27. Y.Z. Wang, Y.X. Zhao, F.Y. Gong, J.F. Dong, K. Maekawa, Developing a three-dimensional finite element analysis approach to simulate corrosion-induced concrete cracking in reinforced concrete beams, Engineering Structures, 257: 114072, 2022, doi: 10.1016/j.engstruct.2022.114072.
28. A. Zybura, Degradation of Reinforced Concrete in the Corrosion Conditions [in Polish: Degradacja zelbetu w warunkach korozyjnych], Dział Wydawnictw Politechniki Slaskiej, Gliwice, 1990.
29. A.C. Eringen, G.A. Maugin, Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York, NY, 1990, doi: 10.1007/978-1-4612-3226-1.
30. J. Kubik, Thermodiffusion Flows in a Solid with a Dominant Constituent, Ruhr-Universität Bochum, Bochum, Germany, 1985.
31. K. Wilmanski, Continuum Thermodynamics, World Scientific, Berlin, Heidelberg, 2008, doi: 10.1142/7052.
32. J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, 1990.
33. T. Krykowski, Modeling of the cover damage caused by concrete reinforcement corrosion [in Polish: Modelowanie uszkodzenia otuliny wywołanego korozja zbrojenia w zelbecie], Studia z Zakresu Inzynierii, Nr 78, Polska Akademia Nauk, Komitet Inzynierii Ladowej i Wodnej PAN, Warszawa, 2012.
34. K. Wilmanski, Foundations of Phenomenological Thermodynamics [in Polish: Podstawy termodynamiki fenomenologicznej], PWN, 1974.
35. B. Wieczorek, T. Krykowski, Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer [in Polish: Zastosowanie reguł mechaniki uszkodzen do oceny wzrostu odkształcen korozyjnych w warstwie przejsciowej], Ochrona przed Korozja, 1: 3–6, 2017, doi: 10.15199/40.2017.1.1.
36. W. Zhang, J. Chen, X. Luo, Effects of impressed current density on corrosion induced cracking of concrete cover, Construction and Building Materials, 204: 213–223, 2019, doi: 10.1016/j.conbuildmat.2019.01.230.
37. P. Menetrey, K.J. Willam, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 92(3): 311–318, 1995, doi: 10.14359/1132.
38. ANSYS, Material Reference, Canonsburg, PA 15317, 2021.
39. P. Grassl, K. Lundgren, K. Gylltoft, Concrete in compression: A plasticity theory with a novel hardening law, International Journal of Solids and Structures, 39(20): 5205–5223, 2002, doi: 10.1016/S0020-7683(02)00408-0.
40. ANSYS, ANSYS Reference Manual, Canonsburg, PA, USA, 2015.
41. K. Yurkova, T. Krykowski, Modeling of the formation of reinforcement corrosion products and their impact on damage of the concrete cover [in Polish: Modelowanie powstawania produktów korozji zbrojenia i ich wpływu na uszkodzenie otuliny betonowej], Inzynieria i Budownictwo, 78(9–10): 410–413, 2022.

Downloads

Published

2023-08-01

Issue

pp. 481–503

Section

CMM-SolMech 2022

How to Cite

Yurkova, K., & Krykowski, T. (2023). Modeling of Cracking of the Concrete Cover Taking into Account the Coupled Diffusion/Mechanical Process. Computer Assisted Methods in Engineering and Science, 30(4), 481–503. https://doi.org/10.24423/cames.1016